Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Panoptic segmentation algorithm based on grouped convolution for feature fusion
FENG Xingjie, ZHANG Tianze
Journal of Computer Applications    2021, 41 (7): 2054-2061.   DOI: 10.11772/j.issn.1001-9081.2020091523
Abstract483)      PDF (1584KB)(480)       Save
Aiming at the problem that the computing of the image panoptic segmentation task is not fast enough for the existing network structures in practical applications, a panoptic segmentation algorithm based on grouped convolution for feature fusion was proposed. Firstly, through the bottom-up method, the classic Residual Network structure (ResNet) was selected for feature extraction, and the multi-scale feature fusion of semantic segmentation and instance segmentation was performed on the extracted features by using the Atrous convolutional Spatial Pyramid Pooling operation (ASPP) with different expansion rates. Secondly, a single-channel grouped convolution upsampling method was proposed to integrate the semantics and instance features for performing upsampling feature fusion to a specified size. Finally, a more refined panoptic segmentation output result was obtained by performing loss function on semantic branch, instance branch and instance center point respectively. The model was compared with Attention-guided Unified Network for panoptic segmentation (AUNet), Panoptic Feature Pyramid Network (Panoptic FPN), Single-shot instance Segmentation with Affinity Pyramid (SSAP), Unified Panoptic Segmentation Network (UPSNet), Panoptic-DeepLab and other methods on CityScapes dataset. Compared with the Panoptic-DeepLab model, which is the best-performing model in the comparison models, with the decoding network parameters reduced significantly, the proposed model has the Panoptic Quality (PQ) of 0.565, with a slight decrease of 0.003, and the segmentation qualities of objects such as buildings, trains, bicycles were improved by 0.3-5.5, the Average Precision (AP) and the Average Precision with target IoU (Intersection over Union) threshold over 50% (AP 50) were improved by 0.002 and 0.014 respectively, and the mean IoU (mIoU) value was increased by 0.06. It can be seen that the proposed method improves the speed of image panoptic segmentation, has good accuracy in the three indexes of PQ, AP and mIoU, and can effectively complete the panoptic segmentation tasks.
Reference | Related Articles | Metrics